二阶和三阶行列式

发表于2018-01-26 14:45 阅读(210)

6.1 二阶和三阶行列式

前言


  线性代数这一学科在自然科学、工程技术、社会科学等许多领域都有应用.例如观测、导航、机器人的位移、化学分子结构的稳定性分析以及密码通讯等方面的研究都少不了线性代数.
  本章介绍线性代数的基础知识,包括行列式、线性方程组、矩阵等内容.

一、行列式


  1、 二阶行列式 
  用消元法求解二元线性方程组
  将方程组中第一个方程乘以,第二个方程乘以,得到
  再将此方程组中的第一个方程减去第二个方程,就消去了,得
类似地,消去,可得
  于是,

  引入记号
  上述记号称为二阶行列式,其中称为行列式的元素.元素的下标表示它所在的位置是第行第列.它的计算规则是:左上角与右下角的元素之积减去右上角与左下角的元素之积.

  说明
  (1)为便于记忆,左上角至右下角的对角线(实线所示)称为主对角线,右上角至左下角的对角线(虚线所示)称为副对角线,于是二阶行列式的值就是:主对角线上的元素作乘积, 副对角线上的元素作乘积,取它们的代数和,前者取正号,后者取负号.

  (2)二元线性方程组的解可利用二阶行列式表示为
 
  其中系数行列式.
  系数行列式的关系是这样的,将的第列的元素换成常数项就是 

  典型例题 
  例6.1.1 解二元线性方程组 
  解       ………………………………… 
       ………………………………… 
       ………………………………… 
  所以,方程组的解为
 

  课堂练习一 
  (1)计算二阶行列式 
  (2)求解二元线性方程组 
         

  2、 三阶行列式 
  定义:三阶行列式
 
  说明:三阶行列式的计算规则如图所示:三条实线看作是平行于主对角线的连线,三条虚线看作是平行于副对角线的连线,实线上三元素作乘积,虚线上三元素也作乘积,取它们的代数和,前者冠以正号.后者冠以负号.此计算规则称为对角线法.
  或者,也可以这样记忆.将第一行和第二行下移,如下图那样构成五行.
  实线上三元素作乘积,虚线上三元素也作乘积,取它们的代数和,前者冠以正号.后者冠以负号.

  典型例题 
  例6.1.2 计算行列式
     

  例6.1.3 计算行列式
     
               

  例6.1.3中的行列式称为上三角行列式,其特点是:主对角线以下的元素全为零,(如右图 所示,空白处的元素全为零,可省略不写),其值为主对角线上的元素之积.


  类似可求得下列特殊行列式的值.
  下三角行列式,其特点是:主对角线以上的元素全为零,(如右图所示,空白处的元素全为零,可省略不写),其值为主对角线上的元素之积.


  对角行列式,其特点是:除主对角线上的元素外,其余元素均为零,(如右图所示,空白处的元素全为零,可省略不写)其值为主对角线上的元素之积.


  总之,上三角、下三角和对角行列式的值都是其主对角线上的元素之积. 

二、克莱姆(Cramer)法则


  未知量的个数和所含方程的个数相等的元线性方程组
  如果其系数行列式
 
  则该方程组有解且解唯一,其解为:
  其中是将中第列的元素用方程组右端的常数项替换后而得到的阶行列式.
  以上计算公式也称为n元线性方程组的公式解.
  注意,克莱姆法则中的条件有两个:
  (1)方程组中未知量的个数等于方程的个数;
  (2)系数行列式不为零.

  典型例题 
  例6.1.4 解三元线性方程组
   因为  
                   
  所以方程组有解且解唯一.
  系数行列式的第一列用等号右端的常数项替换,得到
   
              
  类似地,系数行列式的第二列和第三列分别用等号右端的常数项替换,得到
  因此,原方程组的解为
             

  思考:克莱姆法则中说,如果系数行列式不等于零,则方程组有解且解唯一,那么,如果系数行列式等于零,又会是什么情况呢?
  推论:如果线性方程组的系数行列式等于零,则该方程组或者无解或者有解但解不唯一.
  定义:常数项全为零的线性方程组称为齐次线性方程组.
  例如,线性方程组
称为三元齐次线性方程组.
  请观察上述齐次线性方程组,能一眼看出它有没有解吗?
  将全取零代入方程组,三个方程全成立,所以是方程组的一组解.
  可见,齐次线性方程组一定有零解. 

  推论1 若齐次线性方程组的系数行列式,则该方程组仅有零解.
     因为 所以根据克莱姆法则,齐次线性方程组有唯一解.又因为齐次线性方程组必有零解,所以齐次线性方程组仅有零解.
  思考:如果齐次线性方程组的解不唯一,即除了零解以外,还有其它的解,它的系数行列式会怎么样呢?
  推论2 若齐次线性方程组有非零解,则其系数行列式必为零.
  齐次线性方程组有非零解的充分必要条件是其系数行列式;只有零解的充分必要条件是

  典型例题 
  例6.1.5 为何值时,方程组
只有零解?
  分析 因为常数项全为零,所以这是齐次线性方程组,只有零解的充分必要条件是系数行列式
   令
            
  即

  因此,当时,方程组只有零解.
来源:http://www2.edu-edu.com.cn/lesson_crs78/self/j_0022/soft/ch0601.html